Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clinics ; 73(supl.1): e530s, 2018. graf
Article in English | LILACS | ID: biblio-952828

ABSTRACT

Eicosanoids are 20-carbon bioactive lipids derived from the metabolism of polyunsaturated fatty acids, which can modulate various biological processes including cell proliferation, adhesion and migration, angiogenesis, vascular permeability and inflammatory responses. In recent years, studies have shown the importance of eicosanoids in the control of physiological and pathological processes associated with several diseases, including cancer. The polyunsaturated fatty acid predominantly metabolized to generate 2-series eicosanoids is arachidonic acid, which is the major n-6 polyunsaturated fatty acid found in animal fat and in the occidental diet. The three main pathways responsible for metabolizing arachidonic acid and other polyunsaturated fatty acids to generate eicosanoids are the cyclooxygenase, lipoxygenase and P450 epoxygenase pathways. Inflammation plays a decisive role in various stages of tumor development including initiation, promotion, invasion and metastasis. This review will focus on studies that have investigated the role of prostanoids and lipoxygenase-derived eicosanoids in the development and progression of different tumors, highlighting the findings that may provide insights into how these eicosanoids can influence cell proliferation, cell migration and the inflammatory process. A better understanding of the complex role played by eicosanoids in both tumor cells and the tumor microenvironment may provide new markers for diagnostic and prognostic purposes and identify new therapeutic strategies in cancer treatment.


Subject(s)
Humans , Animals , Eicosanoids/physiology , Prostaglandin-Endoperoxide Synthases/metabolism , Fatty Acids, Unsaturated/metabolism , Inflammation/enzymology , Neoplasms/pathology , Neovascularization, Pathologic/etiology , Eicosanoids/pharmacology , Prostaglandins , Arachidonic Acid/metabolism , Neoplasms/enzymology , Neoplasms/drug therapy
2.
Mem. Inst. Oswaldo Cruz ; 100(supl.1): 113-120, Mar. 2005. ilus, tab
Article in English | LILACS | ID: lil-402186

ABSTRACT

An area of increasingly interest for the understanding of cell signaling are the spatio-temporal aspects of the different enzymes involved in lipid mediator generation (eicosanoid-forming enzymes, phospholipases and their regulatory kinases and phosphatases) and pools of lipid precursors. The compartmentalization of signaling components within discrete and dynamic sites in the cell is critical for specificity and efficiency of enzymatic reactions of phosphorilation, enzyme activation and function. We hypothesized that lipid bodies - inducible non-membrane bound cytoplasmic lipid domains - function as specialized intracellular sites of compartmentalization of signaling with major roles in lipid mediator formation within leukocytes engaged in inflammatory process. Over the past years substantial progresses have been made demonstrating that all enzymes involved in eicosanoid synthesis localize at lipid bodies and lipid bodies are distinct sites for eicosanoid generation. Here we will review our current knowledge on the mechanisms of formation and functions of lipid bodies pertinent to inflammation.


Subject(s)
Humans , Cytoplasmic Vesicles/metabolism , Inflammation/physiopathology , Leukocytes/physiology , Lipid Metabolism/physiology , Eicosanoids/physiology , Inflammation/metabolism
3.
Rev. argent. transfus ; 22(4): 275-87, 1996.
Article in Spanish | LILACS | ID: lil-248849

ABSTRACT

Luego de la injuria del vaso sanguíneo, las plaquetas son activadas, cambian su forma discoide a esférica y se adhieren al endotelio expuesto por un proceso denominado adhesión. Este proceso involucra la interacción de un componente plasmático, el FvW, y una glicoproteína específica de membrana, la GPIb, sobre la superficie plaquetaria. La adhesión es seguida por el reclutamiento de plaquetas adicionales que se adhieren entre sí (proceso denominado agregación). Este proceso comprende, entre otros elementos, la unión del fibrinógeno a receptores plaquetarios específicos GP IIb y IIIa. La adhesión y agregación comprometen la interacción con las proteínas (FG y FvW) que están presentes en el plasma y en los gránulos alfa. Las plaquetas activadas liberan el contenido de sus gránulos, por un proceso llamado secreción. Esto libera sustancias como el ADP, que pueden causar activación adicional de plaquetas. La interacción de las plaquetas con sus agonistas produce una serie de fenómenos que preceden a respuestas como la agregación o secreción. Una de las respuestas plaquetarias más tempranas es la activación de la fosfolipasa C, llevando a la hidrólisis del fosfatidilinositol y a la generación de mensajeros moleculares como el IP3y el DG. El IP3 media el aumento de la concentración del calcio ionizado en la plaqueta, lo cual se considera un factor regulador en varias respuestas plaquetarias como la movilización mediada por fosfolipasa A2 de AA libre, desde los fosfolípidos unidos a la membrana y la fosforilación de la cadena liviana de miosina, que está involucrada en la secreción plaquetaria. El DG activa a la proteinquinasa C, la cual produce la fosforilación de una proteína de 47 kD. Esta se sabe que tiene un rol sinérgico con la movilización de calcio intracelular. Otra respuesta a la estimulación plaquetaria es la liberación de AA de los fosfolípidos de la membrana y su oxigenación a tromboxano A2 por las enzimas cicloxigenasa y tromboxano sintetasa. De este modo la activación plaquetaria termina en la formación y liberación de sustancias activantes (ejemplos: ADP y TXA2), los cuales producen un mecanismo de feed-back positivo, que amplifica el proceso de activación. El rol más importante de las plaquetas en la hemostasia es su contribución a la activación de la cascada de coagulación y los fenómenos que conducen a la generación de trombina. Varias reacciones enzimáticas de la coagulación ocurren sobre la superficie plaquetaria...


Subject(s)
Humans , Platelet Aggregation/physiology , Blood Coagulation Factors , Blood Platelets/metabolism , Blood Platelets/physiology , Blood Platelets/ultrastructure , Phosphatidylinositols/metabolism , Thrombin , Aspirin/pharmacokinetics , Eicosanoids/physiology
5.
Braz. j. med. biol. res ; 24(3): 319-21, mar. 1991. tab
Article in English | LILACS | ID: lil-99571

ABSTRACT

The participation of platelet-activating factor (PAF,PAF-acether) in a mouse model of pulmonary edema was studied using specific antagonists.Mice were treated before induction of edema with the PAF antagonists BN52021 (10mg/kg, ip), PCA 4248 (10 mg/kg, po) or WEB2170 (10mg/kg, ip),the lipoxygenase inhibitor EP10161 (10 mg/kg,ip),the cyclo-oxygenase inhibitor aspirin (250 mg/kg,po), or with the mixed cyclo-lipoxygenase inhibitor BW755C(50 mg/kg, ip).The test drugs were administered to animals either 30 min (When the ip route was used) or 60 min (when given po) prior to the induction of pulmonary edema.Pulmonary edema was induced by intravenous administration of adrenaline (2 mg/kg). When the lung-body index was usedas thecriterion for comparision between groups,BN52021, PCA4248 and WEB2170 were found to have no significant effect on pulmonary edema. In contrast, EP10161, aspirinand BW755C significantly inhibited pulmonary edemaby 49%,30% and 27%,respectively. The results suggest that arachidonate metabolites are likely to play a major roe in adrenaline-induced pulmonary edema in mice, whereas PAF-acether does not seem to play an important role in this model


Subject(s)
Mice , Animals , Eicosanoids/antagonists & inhibitors , Platelet Activating Factor/antagonists & inhibitors , Pulmonary Edema/chemically induced , Capillary Permeability , Eicosanoids/physiology , Epinephrine , Infusions, Intravenous , Organ Size , Platelet Activating Factor/physiology , Pulmonary Edema/pathology , Pulmonary Edema/physiopathology
6.
J. bras. nefrol ; 12(4): 150-8, dez. 1990.
Article in Portuguese | LILACS | ID: lil-126917

ABSTRACT

O desenvolvimento da esclerose glomerular e a deterioraçäo progressiva da funçäo renal säo características comuns a todas as nefropatias que evoluem para o estado terminal. Os autores descrevem e analisam criticamente as principais teorias propostas para explicar a natureza progressiva das lesöes renais, quais sejam: teoria hemodinâmica, o comprometimento túbulo-intersticial, a deposiçäo glomerular de lípides, a hipertrofia glomerular e o papel dos prostanóides


Subject(s)
Humans , Animals , Rats , Glomerulosclerosis, Focal Segmental/etiology , Eicosanoids/physiology , Kidney Glomerulus/pathology , Glomerulosclerosis, Focal Segmental/physiopathology , Hyperlipidemias/complications , Hypertrophy/complications , Nephritis, Interstitial/complications
SELECTION OF CITATIONS
SEARCH DETAIL